

Сравнение различных подходов для численного моделирования потоков на склонах гор

Дарья Романова

Институт системного программирования им. В.П. Иванникова РАН, Москва Механико-математический факультет МГУ имени М.В. Ломоносова, Москва

2020

& Unicfd Актуальность

Барсемская селевая катастрофа в июле 2015 года в Таджикистане (Докукин и др. 2019) привела к очень большим материальным убыткам.

Участок Барсемской селевой катастрофы на космических снимках: a, d — снимки со спутника WorldView-2 от 20.09.2012; b, е — снимки со спутника Канопус-В No 1 от 06.10.2015; c, f — снимки со спутника Sentinel-2A от 07.08.2018 (Докукин и др. 2019)

Заградительные сооружения, Шамони.

Для изучения задачи разрушения и уноса потоком подстилающей поверхности были рассмотрены различные подходы для моделирования склоновых потоков. Для двух наиболее популярных было проведено исследования возможности моделирования разрушения подстилающей поверхности. Эти два подхода это:

- С использованием осреднённых по глубине уравнений механики сплошной среды (уравнений типа мелкой воды)
- С использованием трёхмерного многофазного подхода, основанного на полных, не осреднённых по глубине, уравнениях механики сплошной среды

Данные два подхода были применены для моделирования эксперимента по спуску водо-снежного потока в лотке (Agustsdottir 2019; Jones 2019) и для расчёта лавинного потока в 22 лавинном очаге на горе Юкспор Хибины.

Осреднённые по глубине уравнения

Математическая модель Раутера и Туковика, используемая в данной работе отличается от (Savage и K. Hutter 1989; Savage и K. Hutter 1991; Grigorian, Eglit и lakimov 1967; Greve, Koch и Kolumban Hutter 1994) тем, что она записывается в глобальной декартовой системе координат, не привязанной к склону.

$$\begin{cases} \frac{\partial h}{\partial t} + \boldsymbol{\nabla} \cdot (h \bar{\boldsymbol{u}}) = 0, \\ \frac{\partial (h \bar{\boldsymbol{u}})}{\partial t} + \boldsymbol{\nabla} \cdot (h \bar{\boldsymbol{u}} \bar{\boldsymbol{u}}) = -\frac{1}{\rho} \boldsymbol{\tau}_b + h \boldsymbol{g} - \frac{1}{2\rho} \boldsymbol{\nabla} (h p_b) - \frac{1}{\rho} \boldsymbol{n}_b p_b, \\ \boldsymbol{\tau}_b = \mu p_b \frac{\bar{\boldsymbol{u}}}{|\bar{\boldsymbol{u}}| + u_0} + \frac{\rho \boldsymbol{g}}{\xi} |\bar{\boldsymbol{u}}| \bar{\boldsymbol{u}}. \end{cases}$$

Математическая модель

Осреднённые по глубине уравнения

Первое уравнение системы представляет собой осреднённое по глубине уравнение неразрывности, второе и третье уравнения системы, представляют собой нормальную и касательную к склону составляющие осреднённого по глубине закона сохранения количества движения:

$$\begin{cases} \frac{\partial h}{\partial t} + \boldsymbol{\nabla} \cdot (h\bar{\boldsymbol{u}}) = 0, \\ \frac{\partial (h\bar{\boldsymbol{u}})}{\partial t} + \boldsymbol{\nabla}_t \cdot (h\bar{\boldsymbol{u}}\bar{\boldsymbol{u}}) = -\frac{1}{\rho}\boldsymbol{\tau}_b + h\boldsymbol{g}_t - \frac{1}{2\rho}\boldsymbol{\nabla}_t(hp_b), \\ \boldsymbol{\nabla}_n \cdot (h\bar{\boldsymbol{u}}\bar{\boldsymbol{u}}) = h\boldsymbol{g}_n - \frac{1}{2\rho}\boldsymbol{\nabla}_n(hp_b) - \frac{1}{\rho}\boldsymbol{n}_b\boldsymbol{p}_b, \\ \boldsymbol{\tau}_b = \mu p_b \frac{\bar{\boldsymbol{u}}}{|\bar{\boldsymbol{u}}| + u_0} + \frac{\rho g}{\xi} |\bar{\boldsymbol{u}}|\bar{\boldsymbol{u}}. \end{cases}$$

Математическая модель

Многофазная трёхмерная модель

Поток рассматривается как многофазное течение, одна из фаз — воздух, другая — материал потока (снег или грязе-каменная смесь), каждая из фаз считается несжимаемой и обе фазы имеют единую скорость.

$$\begin{cases} \boldsymbol{\nabla} \cdot \bar{\boldsymbol{u}} = 0, \\ \frac{\partial \alpha}{\partial t} + \boldsymbol{\nabla} \cdot (\bar{\boldsymbol{u}}\alpha) = 0, \\ \frac{\partial (\rho \bar{\boldsymbol{u}})}{\partial t} + \boldsymbol{\nabla} \cdot (\rho \bar{\boldsymbol{u}} \bar{\boldsymbol{u}}) = -\boldsymbol{\nabla} \bar{\boldsymbol{p}} + \boldsymbol{\nabla} \cdot \bar{\boldsymbol{\tau}} + \rho \bar{\boldsymbol{f}}, \\ \frac{\partial (\rho k)}{\partial t} + \boldsymbol{\nabla} \cdot (\rho \bar{\boldsymbol{u}} k) = \boldsymbol{\nabla} \cdot (\mu \boldsymbol{\nabla} k) - \boldsymbol{\nabla} \cdot \left(\frac{\mu_t}{\sigma_k} \boldsymbol{\nabla} k + P_k\right) - \rho \varepsilon, \\ \frac{\partial (\rho \varepsilon)}{\partial t} + \boldsymbol{\nabla} \cdot (\rho \bar{\boldsymbol{u}} \varepsilon) = C_{\varepsilon 1} P_k \frac{\varepsilon}{k} - \rho C_{\varepsilon 2} \frac{\varepsilon^2}{k} + \boldsymbol{\nabla} \cdot \left(\frac{\mu_t}{\sigma_\varepsilon} \boldsymbol{\nabla} \varepsilon\right). \end{cases}$$

Математическая модель

Многофазная трёхмерная модель

Две несжимаемые и несмешиваемые фазы представлены в вычислительной области некоторой смесью с физическими характеристиками, посчитанными по принципу весового среднего. Используются следующие замыкающие соотношения:

$$\begin{cases} \bar{\boldsymbol{\tau}} = 2\mu_{eff}\bar{\boldsymbol{s}}, \quad \bar{\boldsymbol{s}} = 0.5 \left[\boldsymbol{\nabla}\bar{\boldsymbol{u}} + (\boldsymbol{\nabla}\bar{\boldsymbol{u}})^T\right], \\ \mu_{eff} = \mu + \mu_t, \quad \mu_t = \rho C_\mu k^2 / \varepsilon, \\ \rho = \rho_1 \alpha + \rho_0 (1 - \alpha), \\ \mu = \nu \rho, \quad \nu = \nu_1 \alpha + \nu_0 (1 - \alpha), \\ \nu_1 = \nu_1 (\dot{\gamma}) = \min(\nu_{ref}, \frac{\tau_{ref}}{\dot{\gamma}} + K \dot{\gamma}^{n-1}), \\ \dot{\gamma} = \sqrt{2\bar{\boldsymbol{s}} \cdot \bar{\boldsymbol{s}}}. \end{cases}$$

Source обеспечение

Используется свободно распространяемое программное обеспечение с открытым исходным кодом **OpenFOAM**, обладающее следующим рядом преимуществ:

Open √FOAM

- возможность имплементации новых моделей,
- хорошая задокументированность,
- модульное устройство кода,
- широкое распространение, многочисленность разработчиков и пользователей.

Подход с использованием осреднённых по глубине уравнений механики сплошной среды (уравнений типа мелкой воды)

решатель faSavageHutterFoam

Подход с использованием трёхмерного многофазного подхода, основанного на полных уравнениях механики сплошной среды

решатель interFoam

. Unicfd Объект исследования

Верификационный эксперимент

Моделируется эксперимент поставленный в Университете Исландии (Agustsdottir 2019; Jones 2019).

Верификационный эксперимент без заграждений

Графики скорости глуби-И ны потока, замеренные на расстоянии 11.1 метра от начала установки для натурного эксперимента (Experiment), вычисленные с помощью решателя faSavageHutterFoam (Calculated FA) и вычисленные с помощью решателя interFoam (Calculated FV).

Верификационный эксперимент с тремя дамбами

Сравнение измеренных и рассчитанных параметров потока.

	Экспериментальные	Расчётные
	данные	данные
Высота первого всплеска		
на основной дамбе	1.3 м	1.45 м
Высота потока, переливающегося		
через дамбу	0.5 м	0.35 м
Средняя высота потока перед		
основной дамбой в третьей фазе	0.4 м	0.45 м
Время с начала взаимодействия		
потока с основной дамбой	1.25 c	0.9 c
Объём перепрыгнувший		
через основную дамбу	2.684 м ³	2.133 м ³

Объект исследования

22 лавинный очаг горы Юкспор, Хибины

18 февраля 2016 года искусственно в данспущенная ном очаге лавина приобрела катастрофический характер унесла жизни и троих людей, были засыпаны железная и автомобильная дороги, выбиты стёкла в трёх близлежащих домах.

Объект исследования

22 лавинный очаг горы Юкспор, Хибины

Цифровая модель рельефа 22 лавинного очага с точками замера параметров потока и зонами зарождения лавины (голубой) и лавинных отложений (зелёный).

22 лавинный очаг горы Юкспор, Хибины

Расчёт методом конёчной области с использованием уравнений, осреднённых по глубине

пользованием многофазной модели пото-

22 лавинный очаг горы Юкспор, Хибины

Изменение глубины, средней скорости потока, напряжения на дне со временем в точке 1

22 лавинный очаг горы Юкспор, Хибины

Изменение глубины, средней скорости потока, напряжения на дне со временем в точке 2

22 лавинный очаг горы Юкспор, Хибины

Изменение глубины, средней скорости потока, напряжения на дне со временем в точке 3

22 лавинный очаг горы Юкспор, Хибины

22 лавинный очаг горы Юкспор, Хибины

. Unicfd Выводы

- Проведено моделирование эксперимента со спуском потока в лотке при наличии комплекса заградительных сооружений
- Данные вычисления позволяют оценить область применимости каждой из использованных моделей
- Решение, полученное с помощью решателя interFoam, позволяет рассчитать такие параметры, как скорость потока, плотность, глубина, вязкость, сдвиговое напряжение на дне
- Трёхмерный расчёт крупномасштабного склонового потока вычислолительно сложен, подход с использованием уравнений мелкой воды вычислительно менее затратный
- Эффективно комбинировать два рассмотренных подхода
- Требуют уточнения в подходе с использованием уравнений мелкой воды модели замыкающие соотношения описывающие трение на дне и захват материала потоком
- Уточнения таких моделей можно получить из анализа трёхмерных расчётов

Модель с использованием многофазного подхода: $\rho_{snow} = 200 \text{ кг/м}^3.$ $\rho_{air} = 1 \ \kappa \Gamma / M^3$. $\nu_{air} = 1.48 \cdot 10^{-5} \text{ m}^2/\text{c},$ $\nu_{ref} = 10^7 \text{ m}^2/\text{c},$ $\tau_{ref} = 10 \text{ m}^2/\text{c}^2.$ $K = 6 \text{ m}^2/\text{c},$ n = 0.4. $C_{\mu} = 0.09$, $C_{c1} = 1.44$. $C_{c2} = 1.92$. $\sigma_{k} = 1.0.$ $\sigma_{c} = 1.3$

Модель с использованием уравнений мелкой воды:

$$ρ = 200 ext{ kr/m}^3,$$

 $μ = 0.577,$

 $ξ = 10^4 ext{ m/c}^2,$

 $u_0 = 10^{-3} ext{ m/c}.$

🚴 🗇 🖄 Список литературы I

- Agustsdottir, Katrin Helga (май 2019). "The design of slushflow barriers: Laboratory experiments". дис. . . . док. Haskolaprent, Falkagata 2, 107 Reykjavik, Iceland: Faculty of Industrial Eng., Mechanical Eng., и Computer Science, University of Iceland.
- Greve, Ralf, Thilo Koch и Kolumban Hutter (1994). "Unconfined flow of granular avalanches along a partly curved surface. I. Theory". в: Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 445.1924, с. 399—413. DOI: 10.1098/rspa.1994.0068.
- Grigorian, S. S., M. E. Eglit N Y. L. lakimov (1967). "A new formulation and solution of the problem of snow avalanche motion". B: *Trudy Vycokogornogo Geofizicheskogo Inst.* 12, c. 104–113.
- Jones, Rebecca Anne (окт. 2019). "The Design of Slushflow Barriers:CFD Simulations". дис. . . . док. Haskolaprent, Falkagata 2, 107 Reykjavik, Iceland: Faculty of Industrial Eng., Mechanical Eng., и Computer Science, University of Iceland.

Список литературы] Список

литературы

- Savage, S. B. и K. Hutter (1989). "The motion of a finite mass of granular material down a rough incline". в: *Journal of Fluid Mechanics* 199, с. 177—215. DOI: 10.1017/S0022112089000340.
- (1991). "The dynamics of avalanches of granular materials from initiation to runout. Part I: Analysis". в: Acta Mechanica 86.1, с. 201—223. DOI: 10.1007/ВF01175958.
 Докукин, Михаил Дмитриевич и др. (2019). "Барсемская селевая катастрофа на Памире в 2015 году и ее аналоги на Центральном Кавказе". в: Геориск 13.1, с. 26—36. ISSN: 1997-8669.

СПАСИБО ЗА ВНИМАНИЕ!