
Design and development of Svace static analyzers

Andrey Belevantsev, Alexey Borodin, Irina Dudina, Valery Ignatiev,
Alexey Izbyshev, Sergey Polyakov, Evgeny Velesevich, and
Dmitry Zhurikhin
Ivannikov Institute for System Programming of RAS

Ivannikov Memorial Workshop 2018, Yerevan, Armenia

Agenda

Static analysis and development lifecycle

Haven’t we solved the problem yet?

Design decisions and lessons learned*
Overall architecture

Supporting infrastructure

2

Supporting infrastructure

Analysis organization

Analysis algorithms

Warning review

What lies ahead

* See also:
Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles Henri-Gros, Asya Kamsky,
Scott McPeak, and Dawson Engler. A few billion lines of code later: using static analysis to find bugs in the
real world. Commun. ACM 53, 2 (February 2010), 66-75.

Static Analysis Requirements

Wide applicability: defect detection, program
understanding, performance, ...

Application for secure development lifecycle
CI integration, nightly builds, Q&A

Requirements that follow:Requirements that follow:
Fully automatic analysis (no need to change the code)

Scalable to millions of LOC

Fair percent of true positives (60+%)

Sufficient completeness*

Support of programming languages (C/C++/Java/C#),
defect types (many), environments (Windows/Linux)

Extensibility with new checkers, flexibility (tailored config)

Quality tradeoff

3

Haven’t we solved it yet?

A few production tools – can’t they just evolve?

Some non-trivial issues come to mind:
Difficult to compare with competitors: their licenses won’t allow

Difficult to choose the evolution directions

 memory modeling (separation logic etc.)

conventional analyses become demand-driven conventional analyses become demand-driven

 SMT solvers become more powerful and change the way
analyzers build queries for errors detection

The goal of saving developer time is taken further

 Tightly integrate with developer’s workflow (CI)

 Prioritize analyzer’s output so that true warnings are seen first

 Suggest and make semi-automatic code fixes

4

Svace Architecture

1.

3.

2.

5

Build Interception

Detect process launch
LD_PRELOAD to dynamically linked executables

Debugging API (ptrace, WinAPI)

Wrappers (e.g. MS-DOS machine within Windows)

Java: agent injection for compilation APIs interception

C#: msbuild DLL injection (similar to Java)

Parse cmdline/environment
Trace “interesting” launches

Decide on action (usually – run own compiler)

Transform cmdline (options/envvars) for our compiler,
not loosing significant options, include paths, ...

Launch our compiler for generating IR
(or other needed tools) 6

Constructing An Analyzer Compiler

Harsh requirements
Need to be as failproof as possible

Need to understand C/C++ dialects of dozens of
desktop/embedded compilers

Need to understand modern language standards

Has to base on production open source
(C/C++ GCC/LLVM) or buy EDG(C/C++ GCC/LLVM) or buy EDG
Add some “fuzzy parsing” mechanism (ie not stop on error,

but recover as much as possible)

Fixup for dialects (or “morph” user source to get rid of them)

Inject additional data if needed by the analyzer

>1000 patches wrt vanilla Clang

Java/C# is no problem (one compiler)
Though Google invented (and deprecated) Jack compiler... 7

Analysis Engine

Extensibility
Need to support many warning types / checkers

Ways to reuse code and calculated data for checkers
(effectively the data that is always required becomes “core”)

Multiple language support
Lower level common IR

Ensure that analysis assumptions are honored when making IREnsure that analysis assumptions are honored when making IR

Call graph reconstruction
C/C++: requires gathering linkage information

C++/Java/C#: requires (some) devirtualization

Parallel analysis
Analyze in parallel independent call graph parts

Take into account function locality w.r.t. modules

Speed / memory consumption tradeoff
8

Analysis Engine – II

Incremental analysis
May be used for CI integration and for running on developer’s PC

Needs changes in all components (“merging” old and new data)

Need to understand whether to draw a line in analyzing the
unchanged code with changes in context

Determinism
Same/slightly changed results for same/slightly changed source

Varying input data (due to build issues)

Analysis results grouping

Dependence on the iteration order over input data
(fixup the order or change the algorithm)

Function analysis timeouts (avoid “real” timeouts if possible)

Statistical checkers

9

Analysis Algorithms

Memory model / aliasing
Field sensitivity, limited number of dereferences

Alias analysis, escaped memory analysis, strong/weak updates

Sound / unsound
Most analysis is unsound (parameter aliases, loops,

limitations on summary / derefs)

But need fully sound part (unreachable code, functions exiting
program)

Tracking values’ properties
Reason about properties of values, not of memory cells

Should be careful when there are multiple ways to reinterpret
the value

10

Analysis Algorithms – II

Parameterized summaries
Scalability requires limiting the number of passes over a function

Context sensitivity means varying analysis behavior
for different calling contexts

Using function summaries that parameterize analysis results
on external memory means visiting every function only once

Careful to put to the summary only the data describing Careful to put to the summary only the data describing
“escaped” memory and to limit its size

Checkers should decide what information is important to save

“Symbolic” external values
When treating unknown values’ properties conservatively,

intraprocedural analysis doesn’t yield anything useful

Try saving any merges/computations with such values and
resolve them upfront in the call graph with concrete values

11

Error Definitions

Beliefs / inconsistencies
Known way to detect errors: find inconsistencies in the

assumptions the code does about some dataflow facts

Find a control flow “segment” where:
- either there’s always an error if we go there, or
- the “segment” is unreachable / unfeasible
Both ways it makes sense to warn

Rely on programmers not writing unneeded code

A segment may be a control flow edge or
an execution path (for path sensitive analysis)

Statistical checkers also find “inconsistencies”
(mostly done this way this way is “right”)

Language specific definitions are possible (C++, Java) 12

Path sensitivity via symbolic execution

Core engine computes a path predicate

Symbolic states are tracked and merged

Checkers are free to attach conditions to
the attributes they are tracking
We are still reasoning about values, not memory

Just tracking values’ changes (aka “symbolic Just tracking values’ changes (aka “symbolic
state”) is often not enough
Taking a specific path is useful information (comparisons)

Condition simplification
It is useful to apply a handful of trivial simplifications before

passing a query to an SMT solver

13

Warning Review

Convenient review interface
Web-based, but now better be integrated into CI or dev.env

“Dashboard” (bird’s eye view)

Runs comparison
Never see anything once reviewed as a false positive

Need to support slightly changed code and repo branchesNeed to support slightly changed code and repo branches

Lots of data to store (except analysis results)
Source code to show it

Tokens/relations to do syntax coloring/navigation

Even more for e.g. incremental analysis

Migration without loosing review
Match warnings between releases to avoid spurious new stuff

Avoid too much churn (cf. mentioned Coverity paper) 14

What Lies Ahead – Analyzer

More of aliasing

Better loop handling

C++/Java collections
No chance to infer their semantics through implementation,

need to make their primitive operations “first class” in the IR

Serving to different clientsServing to different clients
Basic use case assumes warnings will be reviewed by humans

Need to configure “verboseness”

Need to adapt to the dynamic analysis toolchain use case

Analysis API
Some checkers (e.g. simple source-sink ones) can be done by

customers, and they wish to do so

External API will help but needs resources for support 15

What Lies Ahead – Around Analyzer

Being input to further analyses

Prioritization
Sort out warnings to make true ones stand out

Code fixes
Suggest fixes to certain warnings and (optionally) apply them

Improving review experience (ML)Improving review experience (ML)
Direct more attention to the changes that are potentially risky

Code base wide refactorings
Making changes guided by static analysis results for the whole

code base (think hundreds of git repos)

16

Success is a team effort

