
Ivannikov Institute for System Programming
 of the Russian Academy of Sciences

Key Aspects of
Operating System
Testing

 Alexey Khoroshilov
khoroshilov@ispras.ru

Ivannikov Memorial Workshop
Yerevan, Armenia

03 May 2018

Operating Systems

System
Calls

Special
File Systems

Signals,
Memory updates,
Scheduling,
...

Kernel-space

Kernel Modules

Kernel Core (mmu, scheduler, IPC)

Hardware

Interrupts, DMA IO Memory/IO Ports

User-space

Applications

System
Libraries

Utilities
System
Services

Kernel

Kernel Threads Device Drivers

Operating
System

Embedded Operating Systems

Kernel (mmu,scheduler,ipc)

ArchLib BSP Drivers

Drivers

System
Services

libSYSTEMlibPOSIXlibARINC

POSIX
App

APEX
App

System Services

Build System Configuration
Host System

Target System

User-Space

Kernel-Space

Hardware

Operating System

System Calls System Calls

Interrupts, DMA IO Memory / IO Ports

Operating System Specifics

● HW manager
● dependence on HW and its configurations
● internal activity
● internal parallelism

● Cornerstone of software system
● correct handling of any input/userspace behaviour
● tolerance to unusual events

● e.g. resource exhaustion
● long run time

● => resources leaks are unacceptable
● minimal overhead

Operating System Specifics (2)

● Environment for application software
● compliance to standard API specifications
● compliance to API documentation
● API/ABI forward/backward compatibility

● Execution environment for test system
● minimal influence of test system to

functionality under test
● faults in OS should not be lost

Goals of Testing

● Requirements checking
● Functional requirements
● Information flow restrictions
● Probabilistic requirements

● Anomaly detection
● Assertion failed
● Programming language/HW bad event

● Invalid memory access
● Unspecified behaviour
● ...

● Resource leak
● Data race

Functional Requirement Model

Target
action

Direct
result

State
change

Indirect
result

Auxiliary
action

If event 'Target action' under some conditions happens,
then SUT have to do something.

Functional Requirement Model

Target
action

Direct
result

State
change

Indirect
result

Auxiliary
action

If event 'Target action' under some conditions happens,
then SUT have to do something.

Prepare test situation
Iterate test situations

Influence SUT, e.g.:
- fault injection
- interrupt injection
- context switch

Post actions

Kinds of Test Actions

System
Calls

Special
File Systems

Signals,
Memory updates,
Scheduling,
...

Kernel-space

Kernel Modules

Kernel Core (mmu, scheduler, IPC)

Hardware

Interrupts, DMA IO Memory/IO Ports

User-space

Applications

System
Libraries

Utilities
System
Services

Kernel

Kernel Threads Device Drivers

Operating
System

● Test Actions
● application interface
● HW interface
● internal actions

● inside
● outside

Active Aspects
● Target Test Situations Set

● requirements coverage
● class equivalence coverage
● model coverage (of SUT or reqs)
● source code structure coverage
● data flow coverage

● Test Situations Setup/Set
Generation

● passive
● fixed scenario

● manual
● pre-generated

● coverage driven
● random

● adapting scenario
● coverage driven

● source code coverage
● model/... coverage

● random

● Test Actions
● application interface
● HW interface
● internal actions

● inside
● outside

Monitoring Aspects

System
Calls

Special
File Systems

Signals,
Memory updates,
Scheduling,
...

Kernel-space

Kernel Modules

Kernel Core (mmu, scheduler, IPC)

Hardware

Interrupts, DMA IO Memory/IO Ports

User-space

Applications

System
Libraries

Utilities
System
Services

Kernel

Kernel Threads Device Drivers

Operating
System

● Kinds of Observable Events
● interface events
● internal events

● Events Collection
● internal
● external
● embedded

● Events Analysis
● online

● in-place
● outside

● offline
● Requirements

Specification
● in-place (local, tabular)
● formal model

(pre/post+invariants,...)
● assertions/prohibited events

Monitoring Aspects
● Kinds of Observable Events

● interface events
● internal events

● Events Collection
● internal
● external
● embedded

● Events Analysis (for verdict, for coverage)
● online

● in-place
● outside

● offline
● Requirements Specification

● in-place (local, tabular)
● formal model (pre/post+invariants,...)
● assertions/prohibited events

Ivannikov Institute for System Programming
 of the Russian Academy of Sciences

Robustness Testing

Fault Handling Code

● Is not so fun
● Is really hard to keep all details in mind
● Practically is not tested
● Is hard to test even if you want to
● Bugs seldom(never) occurs

=> low pressure to care

Why do we care?

● It beats someone time to time
● Safety critical systems
● Certification authorities

Run-Time Testing of Fault Handling

● Manually targeted test cases
+ The highest quality

– Expensive to develop and to maintain

– Not scalable
● Random fault injection on top of existing tests

+ Cheap

– Oracle problem

– No any guarantee

– When to finish?

Systematic Approach

● Hypothesis:
● Existing test lead to more-or-less deterministic

control flow in kernel code
● Idea:

● Execute existing tests and collect all potential
fault points in kernel code

● Systematically enumerate the points and inject
faults there

Experiments – Outline

● Target code
● Fault injection implementation
● Methodology
● Results

Experiments – Target

● Target code: file system drivers
● Reasons:

● Failure handling is more important than in
average

● Potential data loss, etc.
● Same tests for many drivers
● It does not require specific hardware
● Complex enough

Linux File System Layers
User Space Application

VFS
Block Based FS:
ext4, xfs, btrfs,
jfs, ...

Network FS:
nfs, coda, gfs,
ocfs, ...

Pseudo FS:
proc, sysfs,
...

Special Purpose:
tmpfs, ramfs,
...

Block I/O layer
- Optional stackable devices (md,dm,...)
- I/O schedulers

Direct I/O Buffer cache / Page cache network

Block DriverDisk Block Driver CD

ioctl,
sysfs

sys_mount, sys_open, sys_read, ...

File System Drivers - Size

File System Driver Size, LoC

JFS 18 KLOC

Ext4 37 KLoC
with jbd2

XFS 69 KLoC

BTRFS 82 KLoC

F2FS 12 KLoC

File System Driver – VFS
Interface

● file_system_type
● super_operations
● export_operations
● inode_operations
● file_operations
● vm_operations
● address_space_operations
● dquot_operations
● quotactl_ops
● dentry_operations

~100 interfaces in total

File System Driver ioctl sysfs

JFS 6 -

Ext4 14 13

XFS 48 -

BTRFS 57 -

FS Driver – Userspace Interface

File System Driver mount options mkfs options

JFS 12 6

Ext4 50 ~30

XFS 37 ~30

BTRFS 36 8

FS Driver – Partition Options

FS Driver – On-Disk State

File System Hierarchy

* File Size

* File Attributes

* File Fragmentation

* File Content (holes,...)

FS Driver – In-Memory State
● Page Cache State
● Buffers State
● Delayed Allocation
● ...

Linux File System Layers
User Space Application

VFS

Block Based FS:
ext4, xfs, btrfs,
jfs, ...

Network FS:
nfs, coda, gfs,
ocfs, ...

Pseudo FS:
proc, sysfs,
...

Special Purpose:
tmpfs, ramfs,
...

Block I/O layer
- Optional stackable devices (md,dm,...)
- I/O schedulers

Direct I/O Buffer cache / Page cache network

Block DriverDisk Block Driver CD

ioctl,
sysfs

sys_mount, sys_open, sys_read, ...100 interfaces30-50 interfaces

30 mount opts
30 mkfs opts

File System State

VFS State*
FS Driver State

FS Driver – Fault Handling

● Memory Allocation Failures
● Disk Space Allocation Failures
● Read/Write Operation Failures

Fault Injection - Implementation

● Based on KEDR framework*
● intercept requests for memory allocation/bio

requests
● to collect information about potential fault

points
● to inject faults

● also used to detect memory/resources leaks

(*) http://linuxtesting.org/project/kedr

KEDR Workflow

http://linuxtesting.org/project/kedr

Experiments – Oracle Problem

● Assertions in tests are disabled
● Kernel oops/bugs detection
● Kernel assertions, lockdep, memcheck, etc.
● Kernel sanitizers
● KEDR Leak Checker

Methodology – The Problem

● Source code coverage is used to measure
results on fault injection

● If kernel crashes code, coverage results are
unreliable

Methodology – The Problem

● Source code coverage is used to measure
results on fault injection

● If kernel crashes code, coverage results are
unreliable

● As a result
● Ext4 was analyzed only
● XFS, BTRF, JFS, F2FS, UbiFS, JFFS2

crashes and it is too labor and time
consuming to collect reliable data

Experiment Results

Systematic vs. Random
Increment
new lines

Time
min

Cost
second/line

Xfstests without fault simulation - 2 -

Xfstests+random(p=0.005,repeat=200) 411 182 27

Xfstests+random(p=0.01,repeat=200) 380 152 24

Xfstests+random(p=0.02,repeat=200) 373 116 19

Xfstests+random(p=0.05,repeat=200) 312 82 16

Xfstests+random(p=0.01,repeat=400) 451 350 47

Xfstests+stack filter 423 90 13

Xfstests+stackset filter 451 237 31

Systematic vs. Random

+ 2 times more
cost effective

+ Repeatable results

– Requires more
complex engine

+ Cover double faults

– Unpredictable

– Nondeterministic

T2C OLVER Autotest Cfg FI KEDR-LC S2E RH KStrider
Active Aspects +- + - + + -
Target Test Situations Set cfgs Specific

requirements coverage + +
class equivalence coverage +
model coverage (SUT/reqs) +
source code coverage almost +

Test Situations Setup/Set Gen
passive +-
fixed scenario + +

manual +
pre-generated

coverage driven +-
random +-

adapting scenario +
coverage driven +

source code coverage almost +
model/... coverage +

random as option
Test Actions

application interface + + +
HW interface
internal actions + + +

inside + +
outside +

Test Aspects (1)

T2C OLVER Autotest Cfg FI KEDR-LC S2E RH KStrider
Monitoring Aspects - - + +- + +-
Kinds of Observable Events

interface events + + +
internal events + + + +

Events Collection
internal + + + + +
external +
embedded

Requirements Specification Specific Plugin Specific Specific
in-place (local, tabular) + + If Dis Dis
formal model (pre/post+invariants,...) + If Co Co
assertions/prohibited events External External External Co Co Co

Events Analysis
online + + +

in-place + + + +
outside +

offline +

Test Aspects (2)

Experience (RTOS)

RTOS Company Application Domain

OC2000/OC3000 NIISI RAS submarines, Su-35, ...

BagrOS OKB Sukhoi Su-57

RelMK-653 RPKB

MOS-OP Aviaavtomatika

EOS Elektroavtomatika Tu-160M2

*** NTC Module Luna-Glob

JetOS ISPRAS Civil aviation

Experience (Linux)

● LSB (Linux Foundation) – LSB Compliance Test Suite and
Infrastructure

● > 100 bugs in libraries, > 150 bugs in specifications
● http://linuxtesting.org/lsb_infrastructure

● Linux Driver Verification (MinObrNauki, OSADL)
● http://linuxtesting.org/ldv
● > 300 bugs in Linux kernel fixed

● AstraLinux (RusBITech) – Custom Linux Security Module
● http://linuxtesting.org/astraver
● Security Policy Model verification
● Deductive verification of LSM

● Alt Linux (BaseAlt) – SELinux
● Security Policy Model development and verification

Ivannikov Institute for System Programming
 of the Russian Academy of Sciences

Thank you!

Alexey Khoroshilov
khoroshilov@ispras.ru
http://linuxtesting.org/

Ivannikov Institute for System Programming
 of the Russian Academy of Sciences

Math

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 38
	Slide 47
	Slide 48
	Slide 50
	Slide 51
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Test Results: Details

