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Operating System Specifics

● HW manager
● dependence on HW and its configurations
● internal activity
● internal parallelism

● Cornerstone of software system
● correct handling of any input/userspace behaviour
● tolerance to unusual events 

● e.g. resource exhaustion
● long run time

● => resources leaks are unacceptable
● minimal overhead



Operating System Specifics (2)

● Environment for application software
● compliance to standard API specifications
● compliance to API documentation
● API/ABI forward/backward compatibility

● Execution environment for test system
● minimal influence of test system to 

functionality under test
● faults in OS should not be lost



Goals of Testing

● Requirements checking
● Functional requirements
● Information flow restrictions
● Probabilistic requirements

● Anomaly detection
● Assertion failed
● Programming language/HW bad event

● Invalid memory access
● Unspecified behaviour
● ...

● Resource leak
● Data race
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Functional Requirement Model

Target 
action

Direct
result
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change

Indirect
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Auxiliary 
action

If event 'Target action' under some conditions happens,
then SUT have to do something.

Prepare test situation
Iterate test situations

Influence SUT, e.g.:
- fault injection
- interrupt injection
- context switch

Post actions



Kinds of Test Actions
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● Test Actions
● application interface
● HW interface
● internal actions

● inside
● outside



Active Aspects
● Target Test Situations Set

● requirements coverage
● class equivalence coverage
● model coverage (of SUT or reqs)
● source code structure coverage
● data flow coverage

● Test Situations Setup/Set 
Generation

● passive
● fixed scenario

● manual
● pre-generated

● coverage driven
● random

● adapting scenario
● coverage driven

● source code coverage
● model/... coverage

● random

● Test Actions
● application interface
● HW interface
● internal actions

● inside
● outside



Monitoring Aspects
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● Events Collection
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● Events Analysis
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● Requirements 

Specification
● in-place (local, tabular)
● formal model 

(pre/post+invariants,...)
● assertions/prohibited events



Monitoring Aspects
● Kinds of Observable Events

● interface events
● internal events

● Events Collection
● internal
● external
● embedded

● Events Analysis (for verdict, for coverage)
● online

● in-place
● outside

● offline
● Requirements Specification

● in-place (local, tabular)
● formal model (pre/post+invariants,...)
● assertions/prohibited events
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Robustness Testing



Fault Handling Code

● Is not so fun
● Is really hard to keep all details in mind
● Practically is not tested
● Is hard to test even if you want to
● Bugs seldom(never) occurs

=> low pressure to care



Why do we care?

● It beats someone time to time
● Safety critical systems
● Certification authorities



Run-Time Testing of Fault Handling

● Manually targeted test cases
+ The highest quality

– Expensive to develop and to maintain

– Not scalable
● Random fault injection on top of existing tests

+ Cheap

– Oracle problem

– No any guarantee

– When to finish?



Systematic Approach

● Hypothesis:
● Existing test lead to more-or-less deterministic 

control flow in kernel code
● Idea:

● Execute existing tests and collect all potential 
fault points in kernel code

● Systematically enumerate the points and inject 
faults there



Experiments – Outline

● Target code
● Fault injection implementation
● Methodology
● Results



Experiments – Target

● Target code: file system drivers
● Reasons:

● Failure handling is more important than in 
average

● Potential data loss, etc.
● Same tests for many drivers
● It does not require specific hardware
● Complex enough



Linux File System Layers
User Space Application

VFS
Block Based FS:
ext4, xfs, btrfs,
jfs, ...

Network FS:
nfs, coda, gfs, 
ocfs, ...

Pseudo FS:
proc, sysfs,
...

Special Purpose:
tmpfs, ramfs,
...

Block I/O layer
- Optional stackable devices (md,dm,...)
- I/O schedulers

Direct I/O Buffer cache / Page cache network

Block DriverDisk Block Driver CD

ioctl,
sysfs

sys_mount, sys_open, sys_read, ...



File System Drivers - Size

File System Driver Size, LoC

JFS 18 KLOC

Ext4 37 KLoC
with jbd2

XFS 69 KLoC

BTRFS 82 KLoC

F2FS 12 KLoC



File System Driver – VFS 
Interface

● file_system_type
● super_operations
● export_operations
● inode_operations
● file_operations
● vm_operations
● address_space_operations
● dquot_operations
● quotactl_ops
● dentry_operations

~100 interfaces in total



File System Driver ioctl sysfs

JFS 6 -

Ext4 14 13

XFS 48 -

BTRFS 57 -

FS Driver – Userspace Interface



File System Driver mount options mkfs options

JFS 12 6

Ext4 50 ~30

XFS 37 ~30

BTRFS 36 8

FS Driver – Partition Options



FS Driver – On-Disk State

File System Hierarchy 

* File Size

* File Attributes

* File Fragmentation

* File Content (holes,...)



FS Driver – In-Memory State
● Page Cache State
● Buffers State
● Delayed Allocation
● ...



Linux File System Layers
User Space Application

VFS

Block Based FS:
ext4, xfs, btrfs,
jfs, ...

Network FS:
nfs, coda, gfs, 
ocfs, ...

Pseudo FS:
proc, sysfs,
...

Special Purpose:
tmpfs, ramfs,
...

Block I/O layer
- Optional stackable devices (md,dm,...)
- I/O schedulers

Direct I/O Buffer cache / Page cache network

Block DriverDisk Block Driver CD

ioctl,
sysfs

sys_mount, sys_open, sys_read, ...100 interfaces30-50 interfaces

30 mount opts
30 mkfs opts

File System State

VFS State*
FS Driver State



FS Driver – Fault Handling

● Memory Allocation Failures
● Disk Space Allocation Failures
● Read/Write Operation Failures



Fault Injection - Implementation

● Based on KEDR framework* 
● intercept requests for memory allocation/bio 

requests
● to collect information about potential fault 

points
● to inject faults

● also used to detect memory/resources leaks

(*) http://linuxtesting.org/project/kedr



KEDR Workflow

http://linuxtesting.org/project/kedr



Experiments – Oracle Problem

● Assertions in tests are disabled
● Kernel oops/bugs detection
● Kernel assertions, lockdep, memcheck, etc.
● Kernel sanitizers
● KEDR Leak Checker



Methodology – The Problem

● Source code coverage is used to measure 
results on fault injection

● If kernel crashes code, coverage results are 
unreliable



Methodology – The Problem

● Source code coverage is used to measure 
results on fault injection

● If kernel crashes code, coverage results are 
unreliable

● As a result
● Ext4 was analyzed only
● XFS, BTRF, JFS, F2FS, UbiFS, JFFS2 

crashes and it is too labor and time 
consuming to collect reliable data



Experiment Results



Systematic vs. Random
Increment
new lines

Time
min

Cost
second/line

Xfstests without fault simulation - 2 -

Xfstests+random(p=0.005,repeat=200) 411 182 27

Xfstests+random(p=0.01,repeat=200) 380 152 24

Xfstests+random(p=0.02,repeat=200) 373 116 19

Xfstests+random(p=0.05,repeat=200) 312 82 16

Xfstests+random(p=0.01,repeat=400) 451 350 47

Xfstests+stack filter 423 90 13

Xfstests+stackset filter 451 237 31



Systematic vs. Random

+ 2 times more
cost effective

+ Repeatable results

– Requires more 
complex engine

+ Cover double faults

– Unpredictable

– Nondeterministic



T2C OLVER Autotest Cfg FI KEDR-LC S2E RH KStrider
Active Aspects +- + - + + -
Target Test Situations Set cfgs Specific

requirements coverage + +
class equivalence coverage +
model coverage (SUT/reqs) +
source code coverage almost +

Test Situations Setup/Set Gen
passive +-
fixed scenario + +

manual +
pre-generated

coverage driven +-
random +-

adapting scenario +
coverage driven +

source code coverage almost +
model/... coverage +

random as option
Test Actions

application interface + + +
HW interface
internal actions + + +

inside + +
outside +

Test Aspects (1)



T2C OLVER Autotest Cfg FI KEDR-LC S2E RH KStrider
Monitoring Aspects - - + +- + +-
Kinds of Observable Events

interface events + + +
internal events + + + +

Events Collection
internal + + + + +
external +
embedded

Requirements Specification Specific Plugin Specific Specific
in-place (local, tabular) + + If Dis Dis
formal model (pre/post+invariants,...) + If Co Co
assertions/prohibited events External External External Co Co Co

Events Analysis
online + + +

in-place + + + +
outside +

offline +

Test Aspects (2)



Experience (RTOS)

RTOS Company Application Domain

OC2000/OC3000 NIISI RAS submarines, Su-35, ...

BagrOS OKB Sukhoi Su-57

RelMK-653 RPKB

MOS-OP Aviaavtomatika

EOS Elektroavtomatika Tu-160M2

*** NTC Module Luna-Glob

JetOS ISPRAS Civil aviation



Experience (Linux)

● LSB (Linux Foundation) – LSB Compliance Test Suite and 
Infrastructure

● > 100 bugs in libraries, > 150 bugs in specifications
● http://linuxtesting.org/lsb_infrastructure

● Linux Driver Verification (MinObrNauki, OSADL)
● http://linuxtesting.org/ldv
● > 300 bugs in Linux kernel fixed

● AstraLinux (RusBITech) – Custom Linux Security Module
● http://linuxtesting.org/astraver
● Security Policy Model verification
● Deductive verification of LSM

● Alt Linux (BaseAlt) – SELinux
● Security Policy Model development and verification
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