SPLab Research for Safe and Effective Software

System Programming Laboratory
Yerevan State University

Sevak Sargsyan
sevaksargsyn@ispras.ru



SPLab Team

Founded by Victor Ivannikov in 2009.

International team of bright researchers:

Members from Armenia

1. Yerevan State University
2. National Polytechnic University
3. Russian-Armenian University

Members from Russia, ISP RAS

1. Moscow State University
2. Moscow Institute of Physics and Technology




ISP[TH

SPLab Team

Summer courses for new members selection (2, 3, 4 grade):
1. Compilers: Design and Implementation

2. Software Security

3. Advanced C++ and Algorithms

Victor lvannikov nominal scholarship for 10 months.
Graduate work.



SPLab Projects

Compiler optimizations
Code Obfuscation

Source code clone detection
Code static analysis

Code dynamic analysis

S g= BRI =




ISP[TH

Compiler Optimizations

=

GCC — Optimal code generation for ARM architecture (patches
accepted by community)

LLVM — Vectorization, instruction scheduling (Intel, ARM)

V8 — Register allocation

V8 — «Hot» functions profiling

V8 — Register rematerialization

V8 — LLVM as backend

Webkit — Register allocation

LLVM as backend for PostgreSQL (github

)

S > O &= W IO



Code Obfuscation

Code obfuscation is used for:
1. Security Improvement
2. Protection from reverse engineering

LLVM based source code obfuscator (data and control flaw obfuscation):
Functions merge

Local variables reordering on stack

Redundant calculation

Branching

Extra functions call




ISP[TH

Source Code Clones Detection

—

Code clones detection based on program dependence graph

(supported for: C/C++/Objective-C, JavaScript, Ruby, Python,

Haskell, Java, PHP, Pure, Lua, LLVM bitcode)

Scalable (million lines of source code: Android, Linux kernel)

Accurate (> 90%)

Extendable for new language (based on LLVVM bitcode or PDG)

Cross-Language (can detect rewritten code fragments from one
language to another)

. Copy-paste error detection

Sl= 0 N




Code Static Analysis

Binary code clone detection (viruses detection, etc.)
Old/buggy software components/library detection
Buffer overflows detection

Format string detection (C/C++ printf)

Use after free detection (C/C++, new/delete)

= NSRS N




ISP[TH

Code Dynamic Analysis

BNF grammar fuzzing (compiler, interpreter)
Directed fuzzing

Network fuzzing

STDIN, ARGV, ENVIRONMENT fuzzing

B~




ISP[TH

Our Research Results

All instruments are comparable or exceed best analogs:
1. More than 30 publications and conferences

2. Three PhD candidate works

3. More than 20 graduate works



Thank You!




