
SPLab Research for Safe and Effective Software

System Programming Laboratory

Yerevan State University

Sevak Sargsyan

sevaksargsyn@ispras.ru



SPLab Team

Founded by Victor Ivannikov in 2009.

International team of bright researchers:

Members from Armenia
1. Yerevan State University

2. National Polytechnic University

3. Russian-Armenian University

Members from Russia, ISP RAS
1. Moscow State University

2. Moscow Institute of Physics and Technology



SPLab Team

Summer courses for new members selection (2, 3, 4 grade):
1. Compilers: Design and Implementation

2. Software Security

3. Advanced C++ and Algorithms

Victor Ivannikov nominal scholarship for 10 months.

Graduate work.



SPLab Projects

1. Compiler optimizations

2. Code Obfuscation

3. Source code clone detection

4. Code static analysis

5. Code dynamic analysis



Compiler Optimizations

1. GCC – Optimal code generation for ARM architecture (patches 

accepted by community)

2. LLVM – Vectorization, instruction scheduling (Intel, ARM)

3. V8 – Register allocation

4. V8 – «Hot» functions profiling

5. V8 – Register rematerialization

6. V8 – LLVM as backend

7. Webkit – Register allocation

8. LLVM as backend for PostgreSQL (github

https://github.com/ispras/postgres)



Code Obfuscation

Code obfuscation is used for:

1. Security Improvement

2. Protection from reverse engineering

LLVM based source code obfuscator (data and control flaw obfuscation):

1. Functions merge

2. Local variables reordering on stack

3. Redundant calculation

4. Branching

5. Extra functions call

6. …..



Source Code Clones Detection

1. Code clones detection based on program dependence graph 

(supported for: C/C++/Objective-C, JavaScript, Ruby, Python, 

Haskell, Java, PHP, Pure, Lua, LLVM bitcode)

2. Scalable (million lines of source code: Android, Linux kernel)

3. Accurate (> 90%)

4. Extendable for new language (based on LLVM bitcode or PDG)

5. Cross-Language (can detect rewritten code fragments from one 

language to another)

6. Copy-paste error detection



Code Static Analysis

1. Binary code clone detection (viruses detection, etc.)

2. Old/buggy software components/library detection

3. Buffer overflows detection

4. Format string detection (C/C++ printf)

5. Use after free detection (C/C++, new/delete)



Code Dynamic Analysis

1. BNF grammar fuzzing (compiler, interpreter)

2. Directed fuzzing

3. Network fuzzing

4. STDIN, ARGV, ENVIRONMENT fuzzing



Our Research Results

All instruments are comparable or exceed best analogs:

1. More than 30 publications and conferences

2. Three PhD candidate works

3. More than 20 graduate works



Thank You!


