IVANNIKOV MEMORIAL WORKSHOP

Towards Scalable Complex Event Processing

Fighting the Exponentiality of

Event Pattern Detection

Ilya Kolchinsky <u>Assaf Schuster</u>

Overview

- Complex event processing (CEP)
- The reason CEP is difficult
- Data-aware CEP
- Lazy evaluation in CEP
- Join methods for CEP
- Adaptive CEP

Complex Event Processing

Traditional DB

Stream Processing

Complex Event Processing Static, mostly relational data
"Classic" SQL queries, joins, etc.
A well-established field since the 70s

- Data streams instead of tables
- Tight real-time requirements
- Very limited local memory
- Mostly aggregation queries (heavy hitters, distinct items, etc.)
- A data item is viewed as a primitive event
 Primitive events are combined into
 complex events which conform to user defined patterns
- The goal is to detect complex event occurrences in the input stream(s)

CEP Example 1 – Security Surveillance System

SEQ(MainLobbyCameraEvent a, CorridorCameraEvent b, RestrictedAreaCameraEvent c) WHERE (a.person_id == b.person_id == c.person_id)

CEP Example 2 – Monitoring Stock Prices

SEQ(GoogleStockPriceUpdate a,

MicrosoftStockPriceUpdate b,

AppleStockPriceUpdate c)

WHERE WITHIN 10 minutes

CEP Applications

Pattern Types in CEP

Disjunctions

 at least one of the specified events must be occur

Conjunctions

 all events specified in the pattern must occur

Sequences

 all events must occur in the predefined order

Pattern Types in CEP – contd.

Negations

- some events are prohibited from occurring at the specified positions
- some events may appear an unlimited number of times

Nested patterns

• arbitrary combinations of all of the above

CEP Evaluation Mechanisms

- Non-deterministic Finite
 Automata

• Evaluation Trees

NFA-Based Detection Example

GoogleStockPriceUpdate a, MicrosoftStockPriceUpdate b, AppleStockPriceUpdate c) WHERE ((a.price < b.price) AND (b.price < c.price)) WITHIN 10 minutes

Tree-Based Detection Example

C₁

Complex Event Processing is difficult

 The number of partial matches to be maintained during the detection process is exponential in pattern size!

Data-Aware CEP

- Define multiple evaluation plans for a given pattern
- Leverage the available knowledge on statistical data properties to select the best plan
- Possible for trees 😳
- No such model for NFA
 S

SEQ(A a, B b, C c)

WHERE (a.price < b.price) AND (b.price < c.price) WITHIN 1 hour

Lazy Evaluation Model for NFA

[DEBS'15 Best Paper Award]

- Process incoming events according to arbitrary order (rather than in order of appearance)
- Keep the unprocessed events in an intermediate storage
- Process the buffered events only when required by the plan in use

Lazy NFA – (order *c,a,b*)

SEQ(A a, B b, C c) WHERE (a.price < b.price) AND (b.price < c.price) WITHIN 1 hour

Lazy NFA –(order *b,a,c*)

SEQ(A a, B b, C c) WHERE (a.price < b.price) AND (b.price < c.price) WITHIN 1 hour

What is the best evaluation order?

- A simple solution: order the events from the rarest to the most frequent
 - assume the frequencies are given and are not changing

Join Order Estimation

- A well-known problem since the 80's
- Given n relations joining on m attributes, what is the most efficient way to perform the join?
- Extensively studied, lots of algorithms published
- Hmmm.... So.....
- Can an instance of CEP plan generation problem be transformed into this problem?
- [Submission-I 2018]

Join Query Plan Types

Left Deep Tree Bushy Tree (resembles NFA?) (resembles CEP Trees?)

Problem Equivalence

Existing Algorithms

Experimental Results – NFA throughput

Data-Aware CEP in Practice

- Will the data-aware method work in a reallife scenario?
- Probably not
 - arrival rates / selectivities not known in advance
 - arrival rates / selectivities subject to frequent changes
- Adaptation is needed

Practice:

Theory:

Adaptive CEP

Possible Adaptation Strategies

- Periodically recalculate the evaluation plan based on new statistics
- Monitor all statistic values against a predefined threshold
- Can we do better?

Experimental Results - NFA

Summary

- Incorporating data statistics allows a CEP system to achieve a performance boost of orders of magnitude (Still not enough ^(C))
- Detection latency and memory consumption are also significan ly improved
- Many open questions remain

ARARAT

LONTRA PRACA

PEACE BARREL

Set for ageing in honor of the visit of co-chairs of OSCE Minsk Group and will be opened when Karabakh conflict is resolved.

Yerevan 2001

QUESTIONS?